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In this paper we consider the problem of stabiligation of nonholonomic sys-
tems in the neighborhood of the set of unstable positions of equilibrium,
and construct a stabilizing control analytical in coordinates and velocities,
1. Let us consider a controlled mechanical system whose position 1s
defined in terms of generalized coordinates ¢,(z) {f£ = 1,..., n+2) with £
holonomic constraints. We shall assume that the constraints are linear and
steady, and can therefore be represented as s system of £ nonintegrable
differential equations
n-l
2 %H’i(qi?“-? Qnﬁ)‘}’i’:g {fg:is"'rl} (1'1)
i=1 .
where xkg(q} are functions of generalized coordinates ¢, only. We shall
assume that the forces acting on the system have a force function. Then,
motion of the system under consideration can be described in terms of Lagrange
equations with undetermined multipliers [1]
1
d 8T ar JH .
AT R E;%xki (=tonty (3
Here T(g*) and 1{g) are the kinetic and potential energy of the system,
u 1s a scalar defining the magnitude of the control, 2,(g) are functions
defining the direction of the control w 1in the space {g,} , functions 7,
I and b, are given and X, are the undetermined multipliers. We shall
consider here the case £ = 1 , but the arguments employed can be extended
to more general cases without any fundamental difficulties. In absence of
control (u = 0) , the position of equilibrium of the system is defined by
the set of equations
Al

e — Mt =0 (i=1,..,n+1 (1.3)

As we know [ 2 and 3]}, from this 1t follows that the equilibrium positions
of a nonholonomic system are not isolated points, but form a manifold {which
is, in our case, a one~parameter manifold) which, afer the elimination of X\
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from (1.3), can be described, for definiteness, by {¥)
=g (Inia)y 4G =0  G=tm je=1,.0 1) (1.4)

We shall assume that the equilibrium pnsition (1.4) of the system (1.2)
is unstable for each value g¢,,,= ¢ belonging to some interval q < ¢ < B
With this assumption we can formulate the problem of stabilization ([41,
p.476) of the system (1.1) and (1.2), i.e. the problem of selecting such a
controlling force U (qy ..., @nits Gis v Gr+1): under the action of
which the position of equilibrium would become asymptotically stable. We
know, that in the absence of control u , full asymptotic stablility of each
isolated position of equilibrium (1.4) of a nonholonomic system cannot be
achieved [ 2 and 3]. An obvious inference suggests itself, that such stability
cannot be achieved even under the action of control wu = u(g, ¢°) .

We shall elaborate this point by considering this situation from the point
of view of the theory of stabilization, developed in [5].

Let us assume that the equilibrium position of (1.4) corresponding to the
value g +1= @* 18 unperturbed and let us construct the equation of perturbed
motion (4 and 6] of the cystem (1.1) and (1.2) in the neighborhood of this
position a*=¢" G i=1,.. ,n-+'1y Changing to new coordinates &,= g, —
—¢,°{(g*) and eliminating the undetermined multiplier X , we obtain the fol-
lowing equations of motion:

d 8T  aT all d T aT a1l
G ol _of o [._“ . _ ]
i ds; 05 o T s,y P F oy It wl(i.s)
(i:::l,...,’l)
n
Sp1 = Z ;5 (1.6)

When u = O , system (1.5) is in equilibrium &,= O . Let us introduce
a new variable n
- Z o;°s;

i=1
Here w,° are the values of the function w,(8,,..., 8,,,) in (1.6}, when
the coordinates &, are equal to zero. Then, assuming that the kinetic and
potential energy o} the system is

n+1 na1
2T = Z @i (Sp - Spyq) S5 2 byj (S1s v -+ v S04n) ;85

i, 3=} i, je=1
we obtain the folloving system of eguations of motion:

2“3 _2b1”+5u+ng+cp1(gss,u) (i=1,...,n) a7

J=1
0o
g= 3 Z‘ ol gF (1.8)
k4r==11, j=1

It should be noted that the expansion of the right-hand side of {1.8)
begins with the terms of at least second order in coordinates and velocities.

#) Following the example of [2], here and in the following we disregard the
special cases.
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Solving (1.7) with respect to higher derivatives and substltuting s;=

=z, .
s;=xy (i =1, ..., n), we obtain (1.7) in the form 2=t
n
R Z @3, gjea Tajq T Oy - 5 - 9, (§, z, u) (L9
i=1

Suppose now that the subsystem
T =A(*)x+b(g)u (z={x1, . - -, ZTan}) (1.10)

obtained from (1.9) by putting € = O and neglecting ¢, , satisfles the
conditions of stabilization (5 and 7]. Then, 1ts unperturbed motion can be
made asymptotically stable by means of the control

n
Uy (2) = D Pz, (1.11)
i=1
We shall seek, for the complete system (1.8) and (1.9), a stabilizing
action u 1in the form
u(z, §) = uu(z) + u (5, 1 §)) (1.12)
admitting alsc the functions which are not analytic
(o0} o
w [E)= Dot + DBlEl (143)
i=1 fex]

This widens, in some cases, the possibllities of stabilizing the system
[5]. In accordance with the theory of critical cases [6 and 8], we shall
introduce the following Liapunov transformation

E=E, = zi+wi (§) (1.14)

where 2, 1s a new varlable and the functions w1(§) satisfy, in the nelgh-
borhood of the coordinate origin x = 0, & = O , Equations

2n

%y =0, Z 4 9j1 P51+ &+ by(ue () +u (g, | & D)4 94 & [El, z)=0 (1.15)
=1

Using (1.1%) we obtain the system (1.8) and (1.9) in the standard form

an
2y = ZI d;;2;+ @y (8 24, -0 Zan)y B=0( 25, .., 2,,)

j=1
discovering at the same time, that the function &°(g, z,,..., 2,,)= ®(2,0,...
...y 0) = 0 for any values of g,,; and B,, in (1.73. This represents the
special case, when the control (1.12) does not make the system (1.8) and
(1.9) asymptotically stable. Nevertheless, as it always happens in such
cases, when u = u f;) , then by (1.11), the unperturbed motion x = O ,
g = 0 will be stagle in the Llapunov sense, and every perturbed motlon

sufficlently close to 1t, will approach asymptotically some stationary motion
g =¢ , Xxy=0 near the point £ =0, x = 0 .

It follows, that in our case 1t 1s expedient to formulate the question of
constructing the control u = u(g, ¢°) which stabilizes asymptotically not
separate polnts ¢ = g%, ¢,=¢,°(¢*) , but the whole manifold of equilib-

rium positions q,°(q) simultaneously. It is the construction of such con-
trol, that 1s the aim of this paper.

2. We shall adopt the following definition. De f inition 2.1
The manifold of equilibrium positions

9% = ¢:°(9) B<g<y, a<p<v<P i=1,..n) (2.1)
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of a nonholonomic system (1.1) and (1.2) shall be called asymptotically sta-
ble, 1if every positlon is stable in the Liapunov sense and, if for each per-
turbed motion close to any of these equllibria ¢,°(¢*) , the condition

limq; == ¢° (4% + &)  for - oo, limg=¢*+¢ tor t>o00
is fulfilled.

Here ¢ 1s an arbltrary small quantity provided the initial perturbations
g,—42,°(¢*) and g — ¢* are small. Let us now consider the following problem.

Problem 2.1 . To find the control u = u(g,, ¢, ¢, ¢*) such,
that the manifold of equilibrium polnts ¢,=¢,°(¢) becomes asymptotically
stable in the sense of the definition 2.1.

We have established before, that, provided that the system (1.10) can be
stabllized, for each fixed value ¢ = ¢* a control u = u,(x) = u(x, g%)
exists which, under small deviations of ¢ from g¥* and x from x(g*),
brings the system into the equilibrium position in the neighborhood of the
point ¢ = g*, x = x(¢g*) . We find therefore, that in order to solve the
problem 2.1, 1t 1s sufficlent to show that the control u can beé constructed
in the form of sufficlently well defined function of parameter ¢

2n
= pilg)a

i=1

—_
]
3]

N

Ideed we find that the control (2.2) can be constructed in the form of a
function analytic in ¢ , for every ¢ belonging to the segment [Y, ﬁ]’
@z <: vy << B < w <: ﬁ'<: ﬂ) To show this, we shall utilize the method of
Liapunov functions and 1ts connection with the method of dynamic programing
[9]. Let the system (1.10) satisfy the conditions for stabilization [5 and
7] for each fixed ¢ from the segment [y,'ﬁ]_ We shall seek the functions
V(x, @) and u(x, ¢) satisfying the criteria of an optimum [4] of motions of
(1.10) in the problem on the minimum of the following integral:
o 2n
V(S w2+ w2 Jar (2.3)
0 i=1
The fact that these functions are analytic in ¢ , 1s important. Indeed,
we have the followlng Lemma.

Lemma 2.1 . Let the problem on optimal stabilization of (1.10) and
(2.3) possess a solution when g = g*, and let us denote by
n
Vizig*) = 2 aii(g*) 2%
iyj=1
the optimal Liapunov function satisfylng all the crlterla of stabllizatlon.
Then, such & > O can be found, that the analogous problem on the optimal
stabllization of the system
z=A(gz+b(qu (2.4)

can be solved for all ¢ 1lying in the &-neighborhood of the point g¢¥, and
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for these ¢ we can construct optimal Liapunov functions
2n
V(t,q) = 2 ai(q)ziz; (2.5)
4,j=1

the coefficlents q,i(q) of which can be expanded into power series

ij (g) = D) ai® (g — g*)¥ (2.6)

k=0
converging in the 6-neighborhood of a*.

Proof . Let us expand the functions a,,(¢) and b,(¢) into a
series in the neighborhood of the point ¢ = g% Putting ¢ — ¢%*= y , we

obtaln
0

[eo]
a@ =2 dPv",  b@= 3 by 2.7
k=0 k=0
Insertion of (2.7) into (2.4) results in

dx‘l n o« 2n o]
= 2 ag-) z; + b§°) u+ 2 Z ¥ ag-‘) z; + Z ykbgk) u (2.8)
j=1 k=1 j=1 k=1

When y =0 (i.e. when ¢ = g*), (2.8) becomes (2.4), and the problem of
optimal stabilization has a solutlon, also the optimal Lia ov function
Vo(x, g*) exists. We shall show that the complete system (2.8), also has
an optimal Liapunov function

[+4} 2n o0
— k  (k 3
V= 3 Falzz = V() 2.9
k=0 i, j=1 k=0
provided y 1is sufficiently small. The Liapunov-Bellman equations

= w n oy
M 0
n}:n[ 3 “ﬁj)”fb?+“2b§°)ﬁ+2%2+“2+
i, j=1 i i=1 i i=1
(o] an o 2n
. oV oV
K (k
+ Z Z y “gi)”fﬁ tu 2 Z y*of? a—i] =0 (2.40)
k=11, j=1 i k=1 i=1 t
1 20 1o e P
=1 © oV ky (k) OV
u 221;{ ax—_Z-Z RS = (2.11)
i=1 i k=1 i=1 i
yield the following partial differential equations
oo an an oo 2n
k (., oV 1 v \2
X 2 vaffa g Nep— (X Dy azi> =0 (242)
k=01, j=1 i =1 k=0 i=1

from which Liapunov function V(x) can be determined.
Solution of (2.12) will be sought in form of the series (2.9)
oo 2n
— k . (k
Vo =2 2 g
k=0 i,j=1

When y = 0 , the above equation has, by the condition of our Lemma, a
solution V = Vo(x, q*), which can be found from
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2n 5V 2n n av
), 0 1 0
2 ainJa‘Q‘*“ yx- 7:(21}(0) ) 0
i, j=1 i=1 i=1
optimal control u'® 1s equal to
2n
1 av,
Y S D
i=1 g
and the system
dx, 2n n
. 0 1 v, .
o= 2w — o b0 E WO =12 (2.13)
j=1. -

i1s asymptotically stable.

Inserting (2.9) into (2.11) and equating the coefficlients of y to zero,
we obtain the following equatlons for V, (x

an
3 oo See (S o
i, j=1 j== 1
erq k

Z 2 o 4 k1—~_ (2 Zb(s) p—s)(z Zb(m) (I—m) 0

s=0 1, j=1 <3 q>0 §=0 i=1 m=0 i=1

(k=1,2,...)

Since the derivative of V, (x) with respect to time has, by virtue of
(2.13) the form

2n

1dV } n o
_k — oy 1/ (0) © Vo o
L dt Jey 2 ¥i G, 7_7( o ){Eb ) (2.1%)
i, j=1 [
we £ind the terms of the series (2.9) from

v ] on . 2n P
0

S == — 2 __ A0 ,__9>
l_ dt o l_g i 4 <121 Oz,

2n

dv \ i)'
k 2‘ NV 3 Pk 2 (0) OV Z (0 y
[dt ](2.13) o R ( b 0>< " ¥ ) -13)

1‘.

=11, s -—]. i==1
P+<I— P 2n

+ — S‘ < 2‘ 2 b(s) p—s >< Z Eb(m q—m)
D, q>0 5=0 i=1 e =1

As (2.13) is asymptotically stable, we can use the Liapunov theorem ([4],
p.67) to prove the existence of a unique solution of (2.15) with % = O
arbitrary. Hence, knowing V, (x) we can find u, (x) and consecutive terms

of (2.9) of any order. We find during this
{w(ﬁ Q(ﬁ} procedure, that a unique solution to the
' problem exists at every step. Convergence
\ v=_ of the series is proved by the method simi-
\ lar to that used in the analogous case in
£ \é77? /l v &‘&E} =0 [10 and 11].

£ . With the series (2.9) constructed, func-
tion u°(x, y) can be found from (2.11).
Fig. 1 gonsequently, the series for u° has the

orm
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[o.0]
u’(z, y) = 2 y® u,” (x) (2.16)
=0
where
| o v,
uh."(x):»—-é- Zb(ik)’az (2 17y
i=1

Since {2.9) converges, (2.16) and {2.17) alsc converge in u° .

Proof of asymptotic stability of the manifold ¢,= ¢,°(2) in the sense of
2.1 follows that of the analyticity of the control wu(x, ¢) stabilizing the
system {2.4) for every fixed ¢ . To achieve this the usual [2 to 4, and 6]
examples are used, and the proof is based on the constructed function
V(q,, g, 2) , the total differential dV/Bt of which 1s, by virtue of equa~-
tions of motion for u = u{x, ¢) , negative. Since the proof follows closely
that of [2], we shall omit 1t, and mention instead some geometrical aspects
of our phenomenon. S8ince V 1is analytic in ¢ and x , surfaces V(x, g)=C
form, in the {x, ¢} space, smooth tubes enclosing the line x = O (Fig.1).

Smoothness of these tubes, the condition that for a fixed ¢ = ¢® we have

- 2n
[£
(Tt_)q=qu — <§1 z;? - u2)

and the equality &(g, O0,..., O) = 0 , together imply that the motion

{x{t), ¢{(t)] is directed along the tube, and its depth of penetration into
the tube during the time dt , is of first order in {{x{¢}]l . From this we
infer that our prevlious statement was correct, and that the following theorem
is true.

Theorem 2.1 . If the system {(1.10) satisfies the conditions for
stabilization [4] for all fixed ¢ Dbelonging to the segment [y,ﬁ] then,
for sufficlently small y , a control wu = ufg,, ¢, ¢) exists, which is a
solution of the problem 2.1, and is in the form of (2.16) and (2.17).

The author expresses his deepest gratitude to N.N. Krasovskilil for the
problem and for the comments.
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