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SYSTEM 

In this paper we consider the problem of stablIlzatlon of nonholonomlc BY%- 
terns In the neighborhood of the set oS unstable positions OS equilibrium, 
and construct a stabilizing control analytical in coordinates and velocities. 

1. Let us consider a controlled mechanical system whose position is 

defined in terms of generalized coordinates g*(t) (t - l,.,.t n-i-t) wfth g 

hofonomlc constraints, We shall assume that the constraints are finear and 

steady, and can therefore be represented as a system of L nonintegrable 

differential equations 

where x,,(p) are functions of generalized coordinates gr only, We shall 

assume that the forces acting on the system have a force function. Then, 

motion OS the system under consideration can be described In terms of Lagr-e 

equations with undetermined multipliers Cl] 

Here .T(p') and IT(g) are the kinetic and potential energy OS the system, 

u is a scalar defining the magnitude of the control, b,(q) are Sunctlons 

defining the direction OS the control u in the space (9,] , functions TT, 

II and b, are given and X, are the undetermined multipliers. We shall 

consider here the case l-1, but the argument8 employed can be extended 

to more general cases without any fundamental d%SSfcultlea. In absence OS 

control (U = 0) , the position of equlllbrlum OS the system Is defined by 

the Set Of’ eQUai.iQnS 

As we know [2 and 33, from this it follows that the equflibrfum positions 

of a nonholonomic system are not isolated points, but Solrla a m&xW&d (which 

is, in our case, a one-parameter manifold) which, afer the elLminatlon of X 
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from (1.3), can be described, for definiteness, by f”) 

We shall assume that the equilibrium position (1.4) of the system (1.2) 

la unstable for each value Q,+~- 4 belonging to some Interval a < Q < B . 
With this assumption we can formulate the problem of stabilization ([43, 

p.476) of the system (1.1) and (1.2), I.e. the problem of selecting such a 

controlling force l.J ((il, - - . , f&.+1, Q1’, . . - , ~&HI), under the action of 

which the position of equilibrium would become asymptotically stable. We 

know, that In the absence of control u , full asymptotic stability of each 

Isolated position of equilibrium (1.4) of a nonholonomlc system cannot be 

achieved C2 and 33. An obvious Inference suggests Itself, that such stability 

cannot be achieved even under the action of control u = U(P, S?*) * 

We shall elaborate this point by considering this situation from the point 

of view of the theory of stabilization, developed in [5]. 

Let us assume that the equilibrium position of (1.4) corresponding to the 
value 

P 
+%- R* Is unperturbed and let us construat the equation of perturbed 

inotIOn 6 and 6] of the cystem (1.1) and (1.2) in the neighborhood of this 
position 94°C q~‘(q*) (i = I,..., a+ i). ch~ing to new coordinrrtes 8,' pl-- 
- Q,'(g*) 8nd elldnating the undetermined multiplier X , we obtain the Pol- 
lowing equations of motion: 

d OT c3T 
-;i-t-a!i-- as, = 

When u I 0 , ayatem (1.5) Is In equilibrium sJ- 0 . Let us Introduce 
a new variable 

4 = Sn+l - i o;si 
i=l 

Here (u,* are the values of the function III, (8, ,..., s,+~) in (1.61, when 
the ooordinates 8 are equal to zero. 
potential energy o!’ the system Is 

Then, assuming that the Mnetlc and 

N-1 
2T = 2 aij (sl, . , sntl) slsj’, 2rI = n$ bij (sl. . . . , sn+J sisi 

i. 3-l 

we obtain the following 
7L 92 

i, j=l 

system of equations of motion: 

k+r=li, j=l 
(i 23) 

It should be noted that the expansion of the right-hand side of (1.8) 
begins with the terms of at least second order in coordinates and velocities. 

l ) Following the example of [2], here ana In the following we disregard the 
special oases. 
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Solving (1.7) with respect to higher derivatives and substituting Si=Tpi_l, 

si'=zzi (i = 1, . . ., n), we obtain (1.7) In the form 

Suppose now that the subsystem 

I' = A (q*) x + b (q*) u (x = i’r,, . * *, %I)) (1.10) 

obtained from (1.9) by putting 5 = 0 and neglecting 'p, , satisfies the 
conditions of stabilization [5 and 73. Then, Its unperturbed motion can be 
made asymptotically stable by means of the control 

2n 

u* (2) = z Pp$ (1.11) 
i=l 

We shall seek, for the complete system (1.8) and (1.9), a stabllizlng 
action u In the form 

u (5 E) = +&c) + u (E, I El) (1.12) 

admitting also the functions which are not analytic 

~6 ICI)= $j a&’ + fj PiI E I’ (1.13) 
i=l i-1 

This widens, In some cases, the posslbllltles of stabilizing the system 
c51. In accordance with the theory of critical cases c6 and 81, we shall 
Introduce the following Llapunov transformation 

%= E, zi = zi+wi(%) (1.14) 

where z1 Is a new variable and the functions w,(s) satisfy, In the nelgh- 
borhood of the coordinate origin x = 0 , 5 - 0 , Equations 

xai - - 0, 5 ai,~j_lX~j_l+ CiC + bj(u* (z) + ~(49 141)) + (~t(4* ICI, z)=sO (1.1” 
j=l 

Using (1.14) we obtain the system (1.8) and (1.9) In the standard form 

zi'= 5 dijZj + Qi(?& zl, * . . ,Z&, f'= @ (4, Zl’ . ** . z&J 

j=l 

discovering at the same time, that the function V'( 
. ..) 0) E 0 for any values of a, and p,, In (1.7 . s 

, "~i;l.~ez~~,‘,~6~~~~... 

special case, when the control (1.12) does not make the system 7 1.8) and 
(1.9) asymptotical1 

T 
stable. Nevertheless, as It always happens in such 

cases, when u - u x) then by (l.ll), the unperturbed motion x - 0 , 
5-O will be statle 1; the Llapunov sense, and every perturbed motion 
sufficiently close to It, will approach asymptotically some stationary motion 
5 =q , x1= 0 near the point s = 0 , x = 0 , 

It follows, that In our case It 1s expedient to formulate the question of 

constructing the control u = u(q, q’) which stabilizes asymptotically not 

separate points p = q*, 9,: P,"(P*) , but the whole manifold of equlllb- 

rlum positions q,‘(q) simultaneously. It Is the construction of such con- 

trol, that 1s the aim of this paper. 

2. We shall adopt the following definition. Definition 2.1. 

The manifold of equilibrium positions 

Pi = CG"(q) (p<q<v, a<p<v<P: i=L...,A) (2.1) 
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of a nonholonomlc system (1.1) and (1.2) shall be called asymptotically sta- 

ble, If every position is stable In the Llapunov sense and, if for each per- 

turbed motion close to any of these equilibria ql"(q*) , the condition 

lim qi == qi” (‘I* + e) for t + m, limq =:,q* +E for t+m 

is fulfilled. 

Here e is an arbitrary small quantity provided. the initial perturbations 

q,- qlo(q*) and q - q* are small. Let us now consider the following problem. 

Problem 2.1. To find the control u = 

that the manifold of equilibrium points ql= q,"(q) 

stable in the sense of the definition 2.1. 

u(n,, P,‘, !7, P’) such, 

becomes asymptotically 

We have established before, that, provided that the system (1.10) can be 

stabilized, for each fixed value q = q* a control u = u*(x) = u(x:, a") 

exists which, under small deviations of q from q* and JC from x(q"), 

brings the system into the equlllbrlum position in the neighborhood of the 

point q I q*, x = x(q*) . We find therefore, that in order to solve the 

problem 2.1, It is sufficient to show that the control u can be constructed 

in the form of sufficiently well defined function of parameter q 

Ideed we find that the control (2.2) can be constructed In the form of a 

function analytic In q , for every q belonging to the segment [Y, 61, 

@<Y<~<Y<fi<<8) To show this, we shall utilize the method of 

Llapunov functions and Its connection with the method of dynamic programlng 

r91. Let the system (1.10) satisfy the conditions for stabilization [5 and 

71 for each fixed q from the segment [y, fi]. We shall seek the functions 

V(X, q) and U(X, q) satisfying the criteria of an optimum [4] of motions of 

(1.10) in the problem 

The fact that these 
we have the following 

Lemma 2.1. 

on the minimum of the following Integral: 

Co 27% 

KZ xi2 + u2 ) at (2.3) 
0 i=l 

functions are analytic in q , is important. Indeed, 

L-amna. 

Let the problem on optimal stabilization of (1.10) and 

(2.3) possess a solution when q = q*, and let us denote by 

2n 

V(Xlq*)= 2 a,'j(q*)X{Xj 
i,j=l 

the optimal Llapunov function satisfying all the criteria of stabilization. 

Then, such b > 0 can be found, that the analogous problem on the optimal 

stabilization of the system 

5' = A (q) X + b (q)-)u (2.4) 

can be solved for all q lying In the 6-neighborhood of the point q*, and 



for these p we can construct optimal Llapunov functions 

2n 

(2.5) 

the coefficients a,,(q) of which can be expanded Into power series 
co 

aij (q) = 2 ap (q - q*p (2.6) 
k=o 

converging In the b-neighborhood of q*. 

Proof . Let us expand the functions a,,(q) and b,(q) Into a 
series In the neighborhood of the point p - 4* Putting q - q*- y , we 
obtain 

‘{j (9) = f$ (V k ‘ij Y 9 b,(q) = ; bik) Yk (2.7) 
k=O k=o 

Insertion of (2.7) Into (2.4) results In 

$35 
co zn 

QXj + bF) u + 2 2 Yk.$)Zj + ; Ykbik) u (2.8) 

j-1 k=lj=l k=l 

When y - 0 (I.e. when q - 4* ), (2.8) becomes (2.4), and the problem of 
optimal stabilization has a solution, also the optimal Lla ov function 
VO((x, q*) exists. We shall show that the complete system 2.8), also has Tun 
an optimal Llapunov function 

V(z, Y) = i 5 yka$)zi"i= ; YkVk(2) (2.9) 

k=o i,j=l k=o 

provided Y Is sufficiently small. The Llapunov-Bellman equations 

2n h 

min a!?)s 
U 13 ?+u zbp)$+ 5 “~+~s+ i ax, 

id i=l 

+; 5 yk+)xje+u 5 5 ykbik) e,]=O 

k=li,j=l k=li=l 

(2.10) 

u=-$bf+;g ;ykbp'z 

i=l k=li=l i 
(2.11) 

yield the following partial differential equations 

k=Oi,j=l 

+ ix: - + (; ; y”b;k) k)‘= 0 

i=l k=O i=l 

(2.12) 

from which Llapunov function V(x) can be determined. 

Solution of (2.12) will be sought in form of the series (2.9) 

00 an 

V(x, q) = 2 2 yka$)aixj . 
k=O i,j=l 

When y=O, the above.equatlon haa, by the condition of our Lemma, a 
solution V = Vo(x, q+), which can be found from 
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Optimal control u") is equal to 

and the system 

(i = 1,. . ,2n) (2.13) 

Is asymptotically stable. 

Inserting (2.9) Into (2.11) and equating the coefficients of 1/ to zero, 
we obtain the following equations for v,(x) : 

5 $+/?!$‘f $+_(~b!f$')2=0 

i. j=l % 2=1 i-s1 

i 5 o$)sia;;;q _;‘$=‘( 5 gb$!*)(i] ~@f!!&+o 

s=O i. j=l P, rl>o s=O i=l 1 m=O i=l 

(k = 1,2,.. .I 

Since the derivative of V,(x) with respect to time has, by virtue of 
(2.13) the form 

'C?I~S.,,) = i 
i, j:=l 

~:::~j~-~_(~bi”‘~~,~b~‘~; (‘.lI) 
1 i2] ). t=1 z 

we find the terms of the series (2.9) from 

As (2.13) is asymptotically stable, we can use the Llapunov theorem ([4], 
p.67) to prove the existence of a unique solution of (2.15) with k 2 0 
arbitrary. Hence, tiowlng V,(r) we can find u,(x) and consecutive terms 

of (2.9) of any order. We find during this 

{WJ, ect)) 
procedure, that a unique solution to the 
problem exists at every step. Convergence 

\ A 
Y=C of the series Is proved by the method slmi- 

4 ’ 
lar to that used In the analogous case in 

0 “IYP GO t-10 and 111. 

With the series (2.9) constructed, func- 
tion u"(x, I/) can be found from (2.11). 

Fig. 1 
Consequently, the series for u" has the 
form 
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where 

Since (2.9) converges, (2.16) and (2.17) also converge in u” . 

Proof of asymptotic stability of the manifold q,- q,'(q) in the sense of 

2.1 follows that of the analytlcltyof the control u(x, q) stabilizing the 

system (2.4) for every fixed q . To achieve this the usual [2 to 4, and 61 

examples are used, and the proof is based on the constructed function 

v(q,, q;, q) , the total differential dV/dt of which is, by virtue of equa- 

tions of motion for u = U(X, q) , negative. Since the proof follows closely 
that of [2], we shall omit It, and mention Instead some geometrical aspects 

of our phenomenon. Since v Is analytic in q and x , surfaces I&, q)-C 
form, in the ix, 

Smoothness of 

and the equality NC, o,..., 0) - 0 8 together imply that the motion 
{x(t), q(t)J is directed along the tube, and its depth of penetration into 

the tube during the time dt , is of first order in /Ir(t)\\ . From this we 

infer that our previous statement was correct, and that the following theorem 

is true. 

4J space, smooth tubes enclosing the line x = 0 (Fig.1). 

these tubes, the condition that for a fixed q - q* we have 

Theorem 2.1. If the system (1.10) satisfies the conditions for 

stabilization [4] for all fixed q belonging to the segment fr,6] then, 
for sufficiently small k , a control u = u(q,, q$‘, q) exists, which is a 

solution of the problem 2.1, and Is in the form of (2.16) and (2.17). 

The author expresses his deepest gratitude to N.N. Krasovskli for the 

problem and for the comments. 
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